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Abstract

Data sets that provide a ground truth to quantify the efficacy of automated algorithms are

rare due to the time consuming and expensive, although highly valuable, task of manually

annotating observations. These datasets exist for niche problems in developed fields such

as Natural Language Processing (NLP) and Business Process Mining (BPM), however it is

difficult to find a suitable dataset for use cases that span across multiple fields, such as the

one described in this study. The lack of established ground truth maps between cyberspace

and the human-interpretable, persona-driven tasks that occur therein, is one of the principal

barriers preventing reliable, automated situation awareness of dynamically evolving events

and the consequences of loss due to cybersecurity breaches. Automated workflow analysis

—the machine-learning assisted identification of templates of repeated tasks—is the likely

missing link between semantic descriptions of mission goals and observable events in

cyberspace. We summarize our efforts to establish a ground truth for an email dataset per-

taining to the operation of an open source software project. The ground truth defines seman-

tic labels for each email and the arrangement of emails within a sequence that describe

actions observed in the dataset. Identified sequences are then used to define template

workflows that describe the possible tasks undertaken for a project and their business pro-

cess model. We present the overall purpose of the dataset, the methodology for establishing

a ground truth, and lessons learned from the effort. Finally, we report on the proposed use of

the dataset for the workflow discovery problem, and its effect on system accuracy.

1 Introduction

The prevalence of Information and Communication Technology (ICT) and their function as a

critical capability enabler now poses a risk for organizations should they become degraded,

compromised, or inoperable [1]. In a military context, commanders want to develop risk man-

agement processes to protect their ICT capability enablers and providemission assurance,
where Mission Assurance (MA) is defined as “measures required to accomplish essential

objectives of missions in a contested environment” [2].

PLOS ONE | https://doi.org/10.1371/journal.pone.0211486 February 7, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Allard T, Alvino P, Shing L, Wollaber A,

Yuen J (2019) A dataset to facilitate automated

workflow analysis. PLoS ONE 14(2): e0211486.

https://doi.org/10.1371/journal.pone.0211486

Editor: Ivan Olier, Liverpool John Moores

University, UNITED KINGDOM

Received: August 24, 2018

Accepted: January 15, 2019

Published: February 7, 2019

Copyright: © 2019 Allard et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from http://mail-archives.apache.org/mod_mbox/

camel-dev/201704.mbox/browser. All relevant

analysis data are included in the supporting

information files.

Funding: This material is based upon work

supported by the Assistant Secretary of Defense

for Research and Engineering under Air Force

Contract No. FA8702-15-D-0001 (AW, LS). Any

opinions, findings, conclusions or

recommendations expressed in this material are

those of the author(s) and do not necessarily

http://orcid.org/0000-0002-5550-7541
http://orcid.org/0000-0003-3677-6698
http://orcid.org/0000-0001-5997-9610
https://doi.org/10.1371/journal.pone.0211486
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211486&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211486&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211486&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211486&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211486&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211486&domain=pdf&date_stamp=2019-02-07
https://doi.org/10.1371/journal.pone.0211486
http://creativecommons.org/licenses/by/4.0/
http://mail-archives.apache.org/mod_mbox/camel-dev/201704.mbox/browser
http://mail-archives.apache.org/mod_mbox/camel-dev/201704.mbox/browser


To realize appropriate risk management, commanders must understand how their mission

is enabled by ICT infrastructure and the impacts to MA should it become compromised,

defective, or unavailable. However, it is challenging to map the infrastructure to the missions

that they are supporting (and vice versa) without an up-to-date understanding of how infra-

structure is being used to accomplish tasks and achieve mission goals. We contend that an

understanding of task semantics is an important input to the commander’s comprehension of

the mission relevant cyber terrain. We seek to associate individual tasks with the mission(s)

they support and the cyber terrain they use. We define the artifact of such a process amission
map. The mission map reveals key entities in the battle space (e.g., missions, tasks, workflows,

hardware, services, people, and data) that support the commander’s mission. It shows the

semantic relationships (e.g. dependencies) between these entities, which help the commander

to comprehend how these entities work together to achieve mission success and the impact to

the mission outcomes from the loss or degradation of mission relevant cyber terrain.

In order for an organization to achieve its mission, it must execute one or more mission-crit-

ical tasks. For example: in an accounting organization, one of these tasks may be to prepare tax

returns on behalf of a client; in a military organization, one of these tasks may involve resupply-

ing forward operating bases. Regardless of the tasks being executed, we propose that many of

them follow workflows, which may be thought of as a template for repeated tasks, and that parts

of a workflow must be executed using resources within the cyber domain. It is our hypothesis

that such workflows can be learned, at least in part, from network data sources, such as emails,

chat logs, and event logs. The ability to automate workflow discovery algorithms is of particular

interest since manual workflow extraction from data is time consuming, and the addition of

automation may help improve the efficiency of workflow analysis techniques.

It is essential that we compare results produced at each step of any workflow analysis pipe-

line against those from a known ground truth dataset in order to adequately evaluate the algo-

rithm’s performance. Additionally, any supervised natural language processing techniques and

algorithms forming part of such a pipeline (for examples, see those described in [3, 4]) require

labeled training data to be used. Current process discovery techniques attempt to mine and

discover workflow models using knowledge obtained from event logs [5], and, recently, natu-

ral language descriptions of the models themselves [6]. However, these event logs (e.g. transac-

tion logs for financial institutions and hospital logs) often lack the level of detail and frame of

reference necessary to effectively correlate events to their high-level missions. We presume

that event characterization from natural language documentsmay provide the necessary mis-

sion context that these event logs lack. These documents (e.g. emails, chat logs, or web content)

contain unstructured event information that can be parsed using natural language processing

(NLP) techniques to learn patterns or extract central themes from such unstructured text that

could then be automatically regularized into event logs. These event logs, enriched with natural

language context, can then be used as input for process discovery algorithms.

Ground-truth datasets do exist for areas of NLP. For example, teams have manually anno-

tated subsets of WordNet [7, 8], a lexical database created in the Cognitive Science Laboratory

of Princeton University that groups English words into sets of synonyms and their relation-

ships among common synonym sets. These manually annotated datasets may be used to quan-

tify the performance of word sense disambiguation techniques [9–11] as well as other NLP

approaches. Similarly, various Business Processing Models [12–14] have ground truth

sequences which allow evaluation of business process discovery techniques. However, the

authors have yet to find a dataset with sufficient ground truth that combines natural language

categorization with the extraction of repeating event sequences to identify workflows.

In this paper, we explain the method by which we created a ground truth for a publicly

available email dataset extracted from the mailing list of an open source software project. Such
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a ground truth dataset supports the development of machine learning algorithms for workflow

analysis. This serves the dual purpose of allowing future researchers in the area of workflow

analysis to transparently understand the methodology that was used to establish the ground

truth, including our novel presentation of mapping trace instances to workflows (described

below), as well as providing a way to replicate the approach using an extension of our source

data or any other source data.

The paper is structured as follows. Section 2 defines a formalism and methodology for

workflow analysis. Section 3 describes our requirements for a validation dataset and our data

selection process. Section 4 explains the method for constructing a ground truth dataset, and

includes an explanation of the modified Delphi process used to construct the consensus-driven

labeled dataset. Section 5 details the results attained at the various Delphi process meetings,

and Section 6 follows with a discussion of these results. Related work is discussed in Section 7,

and Section 8 concludes the paper and discusses future work.

2 Workflow analysis

Modern organizations often establish workflows to help control and monitor how their

employees perform certain defined business functions or tasks (e.g., travel, leave approval, pro-

curement, and recruitment). Having a defined workflow allows organizations the ability to

complete tasks in a somewhat predictable and measurable way. It can also aid in associating an

organization’s mission essential tasks to underlying resources used within the cyber terrain.

Often it is difficult to determine whether defined workflows are actually followed; or if unde-

fined, what actions and workflows are executed on an organizations cyber resources. Work-

flow analysis defines the systematic approach to identify and characterize tasks that are

executed within an organization.

A workflow is defined by the set of actions involved to perform a task, and the logic con-

straints that govern how such actions may be executed with respect to each other.

Definition 1 (Workflow). A directed graph (digraph) G(A, D) where:

1. A = {a1, . . ., an} is the set of actions executed within the workflow, that make up the graph

vertices, and,

2. D = {(ai, aj), . . ., (am, an)} is the set of directed edges between actions, indicating how

actions are temporally ordered or linked.

When a workflow is performed, a subset of actions are executed that follow a particular

path defined by logic constraints. We term this a workflow instance. Not all actions are

required to be present in an instance.

Definition 2 (Workflow Instance). A sequence of actions ai 2 A that are executed in order

to complete a workflow, τA = (a1, . . ., am).

When workflows are instantiated, they may follow different paths consisting of varying

actions. These paths manifest themselves as a sequence of observed events, (e1, . . ., en). We

constrain our approach to datasets consisting of events described by natural language content

such as email, chat, and web content. We term such events natural language events. In order to

perform workflow analysis on the datasets under consideration, the semantics of each event, ei
2 E, must relate back to the actions in aj 2 A. It is possible that each event may describe more

than one action within a workflow or actions in multiple workflows. We derive labels for each

event, both directly from the natural language within the event (keyword label), and indirectly

using an external frame of reference (metalabel). The process of metalabel enrichment with

knowledge from external sources (e.g. semantic databases, dictionaries, etc.) may improve the

accuracy of event characterization with respect to A.
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Definition 3 (Keyword Label). A task-relevant word, k, taken directly from a natural lan-

guage event that helps describe the nature of the event.

Definition 4 (Metalabel). A task-relevant word,m, not necessarily taken from the natural

language event itself, that helps provide context of the event.

Each event ei is described by the sets Ki andMi, where Ki is a set of keyword labels Ki = {k1,

. . ., kn}, andMi is a set of metalabelsMi = {m1, . . .,mn}. Events are then arranged into one or

more event-sequences based their semantics and the context in which they are observed. We

hypothesize that each sequence describes an instantiation of one or more workflows. We term

such a sequence of events a trace, τ.
Definition 5 (Trace). A sequence of observable events ei 2 E that are executed in order to

complete a workflow, τE = (e1, . . ., em).

Each event must belong to at least one trace, even if that trace comprises only one event.

Given a finite time window of observation, it is possible that only some events within a trace

will be observed. Unobserved (missed) events of a trace may occur outside of the time window

or may be overlooked due to imperfect observations. Traces that are not fully observed are

called partial traces. If there are sufficient partial traces of the same workflow, then it is possible

to learn a complete workflow from partial traces.

Putting all this together, given a data set of temporally ordered, natural language events E,

workflow analysis can be performed by constructing functions (via human supervision or

machine learning) that, build upon each other, to map:

1. natural language events ei to sets of keywords ki, K : E! K,

2. events and keywords to metalabels, M : ðE;KÞ ! M,

3. events, keywords, and metalabels to event traces, T : ðE;K;MÞ ! tE,

4. event traces and metalabels to workflow instances A : ðtE;K;MÞ ! tA, and,

5. workflow instances to workflows, G : tA ! GðA;DÞ.

The problem of workflow analysis, then, hinges on the reliable construction of the functions

K, M, T , A, and G that use natural language events to produce keywords, traces, metalabels,

workflow instances, and, ultimately, workflows. In this paper we describe the ways by which

we manually create a consensus-driven, labeled dataset that will ultimately be used to test

machine learning techniques for each step in the workflow analysis pipeline outlined above.

3 A validation dataset

Manually extracting workflows from a dataset is a resource intensive task, especially when

there are no defined workflows a priori. Thus we seek to develop a process of automatic work-

flow extraction from natural language datasets, within the broader context of developing a

mission map for MA. To empirically evaluate our techniques we require a dataset that has the

following properties:

• Natural language events: the events in the dataset must contain at least one user-populated,

natural language field critical for event characterization. Examples of such events include

email, chat, wiki pages, and forum threads. Counterexamples are packet headers and host

authentication logs.

• Data availability: the dataset must be fully accessible, without redaction/de-identification.

• Contains Workflows: the events within the dataset must follow one or more defined

workflows.

A dataset to facilitate automated workflow analysis
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• Ground truth: each observed event must be mapped to workflow actions, and each event

trace defined and mapped to the workflow it represents.

After an extended search, no dataset existed that satisfied all of our desired requirements.

The open source software project email archive from the Apache Software Foundation (ASF)

was the best candidate, satisfying all requirements except the existence of a ground truth.

3.1 The Apache Software Foundation (ASF) email archives

All active projects under the ASF have a dedicated community responsible for managing the

development and release of an Apache product such as Hadoop HDFS [15], ActiveMQ [16],

and Camel [17]. In keeping to their philosophy of openness, all communication and updates

regarding product development generally route through several mailing lists that are eventu-

ally published and available to the public to browse. Anyone across the globe can join a proj-

ect-specific community as a user or developer. Participants engage in a prescribed process to

report and review bugs, contribute code to a future release version, or join the committee that

handles task allocation and release management. Additionally, many Apache projects use vari-

ous software management tools such as Atlassian Jira [18] (issue tracking and management),

Git [19] (distributed version control), and Internet Relay Chat (IRC) (instant messaging).

Each of these services (except IRC) automatically sends emails to the project mailing lists to

inform community members of other developers’ activities. The email corpus satisfies our

requirements as follows:

• Natural language features: Both the subject line and email body contain natural language

text.

• Data availability: The corpus contains emails spanning more than 10 years, and did not

appear to have significant gaps or missing emails throughout this time period. Additionally,

all text and content is open-source and seemed unmodified from the original version.

• Contains Workflows: The Apache project developer community provides a structured wiki

that documents instructions on how issue resolution or code release should be performed.

This indicates that workflows should exist within the dataset. JIRA and Git instances are

used to manage the software development process, and consequently enforce workflows on

certain processes.

• Ground truth: Currently, the mapping of events to their respective workflow action(s), or a

series of events to a trace, is not available and would thus need to be constructed.

After evaluating each Apache project against our criteria we decided to use the Apache

Camel dataset, because it contains multiple sources of data, is vertically aligned, and contains a

number of JIRA issues addressed by the Apache Camel project community. Although the

Apache Camel dataset consists of multi-source data, we focused our ground truth activity only

on email, which is comprised of the following, publicly available mailing lists:

• Dev: Development of the project, code releases, project management, etc.

• Users: General discussion and support amongst users and developers.

• Issues: Bug reports, software testing, task assignment.

• Commit: Automated notifications sent by various ASF version control tools such as SVN,

CVS, and Git.
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3.2 Dataset selection

We next discuss our method of selecting a time window for our Apache Camel email dataset.

There are over 500000 emails in the total email archive corpus, which is far too many to indi-

vidually annotate. By restricting emails from the dev mailing list after the introduction of JIRA

and removing emails with unreadable dates or attachments, we reduced this figure to 209572

emails over 2011-11-15 to 2017-04-27. To down-select further, we imposed the following traits

as requirements:

• A distribution of email traces that contains variable lengths

• Emails should occur within a contiguous time block (not a sampling)

• Emails should contribute to both partial and complete workflow instances

• Total email volume must be manageable for human labelling

We performed some preliminary analyses to help down-select to a more reasonably sized,

but representative time slice within the data. We used JIRA issues (bug reports and feature

requests) as a guide to help assess the trace duration and trace lengths that exist in the data.

Each JIRA issue is assigned a unique number for identification (JIRA ID) and most, but not

all, JIRA actions result in the automatic generation of at least one email that is sent to one of

the other mailing lists associated with the project. These automatic emails contain the JIRA ID

and a label that defines the workflow action being executed, making it straightforward to gen-

erate rough estimates of trace lengths and durations.

The six-year subset of data contains traces that follow both incomplete and complete JIRA

issue resolution workflow instances. Within this subset, 55% of the total of 6825 JIRA issues

contained traces that were marked as resolved, indicating (potentially) completed workflow

instances. Of these resolved issues, approximately 50% were created and resolved within one

day, with a mean time of 70 days and a median of 1.3 days, shown in Fig 1 as red and green,

respectively. This implies that using a period of approximately a week should provide a high

number of resolved JIRA issues, and subsequently a high number of traces and workflows to

ground truth. With regard to trace length, approximately 50% of the resolved issues contained

traces that were resolved within 2 emails, and 95% contained fewer than 9 emails; see Fig 2.

With this data in hand, we selected a 4 day time window containing a total of 250 emails, with

7 JIRA issues created and resolved within the time window and 12 partial JIRA issues of length 3

or more. This window also occurred shortly before a planned software release, ensuring that it

contained a relatively higher density of resolved JIRA issues, over the period 2017-04-14 10:42:39

UTC to 2017-04-19 13:27:37 UTC; see http://mail-archives.apache.org/mod_mbox/camel-dev/

201704.mbox/browser. This provided us an effective set of emails for us to manually annotate in

order to produce more meaningful traces and workflows than just basic JIRA ID assignment.

4 Ground truth construction

Here we describe the methods by which we extracted “ground truth” information from the

250 emails, along with examples from the dataset. Our analysis team consisted of 8 individuals

from the Australian Defence Science and Technology Group (DST Group), the US Naval

Research Lab (NRL), and MIT Lincoln Laboratory (MITLL).

4.1 Methodology

Each member of the team was given the same set of 250 emails that contained the date, from,

to, subject and body fields of an email. An exemplar of the email format is given below:

A dataset to facilitate automated workflow analysis
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Date: [Day], [Date] [Time] [Time Zone]
From: [SENDER] <[SENDER]@[DOMAIN]>
To: [Mailing List]@camel.apache.org
Subject: [Subject Line]
[Email Body]
We note that the emails were provided without preprocessing for spelling or grammar cor-

rections, to account for natural sources of “noise” that may affect labeling fidelity in future

machine learning applications.

4.1.1 Criteria for extracting labels and traces from natural language events. The

ground truth exercise began by abstractly considering the following questions:

1. What are the activity(s) discussed or observed in the email based on its subject line and con-

tent body?

2. What are the main keywords in this email that helped you decide on the activity(s) observed

in Question 1?

Fig 1. Time dependence of completed JIRA issues. 95% cumulative percentage of completed JIRA issues based on the time difference between

creation and resolution of the issue. A mean time difference of 70 days, and a median of 1.3 days was observed.

https://doi.org/10.1371/journal.pone.0211486.g001
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3. To which trace instance does this email belong? (Note that emails of reply chains may not

necessarily be part of the same trace given that some messages may go off-topic or switch to

a different task discussion altogether.)

4. What overall tasks are the traces trying to fulfill?

With these questions in mind, we performed a pilot study on a 50-email dataset from a

slightly different part of the Apache Camel corpus. That exercise, which we do not report here,

guided us to impose the following constraints on our results:

1. Every email must have at least one label.

2. Email labels must be present in the email body or subject line.

3. Obvious ticket numbers or sender/recipient information should be excluded from the

email labels.

4. Every email belongs to at least one activity trace, even if it is a trace by itself.

5. Each metalabel should be a brief phrase, and each email should have one metalabel.

Fig 2. Length dependance of completed JIRA issues. 95% cumulative percentage of completed JIRA issues based on the length of their email chains

from creation to resolution of the issue. A mean email length of 3.8, and a median of 3 was observed.

https://doi.org/10.1371/journal.pone.0211486.g002
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6. Each email should appear in a trace exactly once; emails cannot represent multiple steps in

a trace.

7. Every trace is one-dimensional; branching in traces is not allowed.

4.1.2 The Delphi process. An important aspect in building this ground truth is to ensure

that workflows that are identified are as sound and complete as practicable. To build confi-

dence in the accuracy of our ground truth, the analysis team met at regular intervals during its

construction. At each meeting we used a consensus building method, known as the Delphi

process [20], to come to an agreement on keywords, metalabels, and activity traces. We con-

ducted several additional meetings to decide on action assignments, workflow instances, and

to identify the representative workflows. The Delphi process consists of (1) forming a panel of

people who construct questions, (2) individual construction of responses to the questions, (3)

collecting the responses to determine a majority, and (4) a discussion and voting process to

resolve any objections to the majority vote.

4.1.3 Building consensus. We used a modified Delphi process tailored to satisfy our

application of ground truth construction. Each member labeled email events from the set of

250 in three subsets: emails (0,50), (51,100), and (101, 250). After individually analyzing each

subset, the panel convened for the Delphi method. Between each Delphi meeting we used a

script to gather the responses of each panel member, normalize the keywords to make them

case-insensitive and reconcile duplicates from plurals, and count the numbers of occurrences

of each label, as described in Alg 3. The summarized list of labels with anonymized vote counts

were then sent to each of the panel members before each Delphi meeting to help resolve ties

and to allow the panel members to prepare an argument to advocate for keyword labels that

were, in their opinion, underrepresented. Each member of the panel conducted the following:

1. Read the email’s subject and body:

a. Assign up to 5 key word labels and 1 metalabel (defined in 2) that best summarize/

describe the activities.

b. Assign this email to a trace based on its context.

2. Add all responses to a pool forming a majority opinion/decision on each event.

3. Receive pooled opinions and prepare argument if desired.

4. Convene with the panel to discuss as a group and each person has the opportunity to argue

their justification, with the final result being determined by preferential voting.

An example of this process for keyword labels is provided in Table 1. In this example, four

panel members submitted five keywords each to make a combined total of six keyword labels.

Table 1. Example instance of keyword label consolidation by the Delphi leader before instituting the Delphi

process.

Email Label Panel Member 1 P.M. 2 P.M. 3 P.M. 4 Total Counts

Label A 1 vote 1 1 0 3

Label B 0 vote 0 0 1 1

Label C 1 vote 1 1 1 4

Label D 1 vote 1 1 1 4

Label E 1 vote 1 1 1 4

Label F 1 vote 1 1 1 4

https://doi.org/10.1371/journal.pone.0211486.t001
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Labels C through F received unanimous votes, and label A received 3 votes. At the Delphi

meeting, the presumed resolution would be to select labels A and C through F unless any

member wished to strongly advocate for label B or noticed deficiencies in the set of the pre-

sumed winners. The data presented to the panel members did not show the middle columns of

Table 1; it only provided the labels and the total counts (the first and last columns). Occasion-

ally, panel members voted to reconsider formerly resolved email labels to ensure labeling con-

sistency in the current and later meetings.

To assist in the reproducibility of this work and better explicate our approach, we have bro-

ken down the process into a series of algorithms. Alg 1 summarizes the entire procedure that

each member of the team underwent to arrive at consensus keyword, metalabel, traces, actions,

and workflows. It makes references to two other sub-algorithms: DoDelphiKeywords,

described in Alg 2 and DoWorkflowLabeling, described in Alg 4. We have attempted to

indicate where a team member is expected to perform a decision with the comment “Individ-

ual chooses” where appropriate. In Alg 1 this occurs at the points at which keywords, metala-

bels, and traces are assigned.

Algorithm 1: The overall ground truth algorithm used to establish labels, metalabels,

traces, and workflows

Data: Email dataset: Emails[250]

Result: Labels, Metalabels, Traces

K [] /� Keyword labels for each email �/

M [] /� Metalabels for each email �/

T [] /� Traces of emails �/

for i 1 to 250 do

e Emails[i]
K[e] hk1

e, . . ., k5
ei /� Individual chooses �/

M[e] me /� Individual chooses �/

τ = FindAssociatedTrace(e, K[e],M[e], T) /� Individual chooses �/

if τ 6¼ ; then

τ = τ [ e
else

T = T [NewTrace(e)
end

if i 2 {50, 100, 250} then

K DoDelphiKeywords(Emails, K)

M DoDelphiMetalabels(Emails, K, M)

T DoDelphiTraces(Emails, K, M, T)

end

end

Workflows DoWorkflowLabeling(Emails, K,M, T)

Alg 2, DoDelphiKeywords, represents an instance of the Delphi consensus building

meetings that occurred throughout the exercise. Essentially, it shows how the Delphi leader

assembled the labels from each panel member, how each panel member prepared for the meet-

ing by observing the rankings, and how the meetings actually proceeded to arrive at the con-

sensus keywords for each email. The process for deciding upon consensus metalabels, traces,

action labels, and workflows was similar, but we do not provide explicit algorithms for the Del-

phi processes for each of those cases; the explicit example in Alg 2 can be considered as a tem-

plate for the remaining data products. As an example, a candidate trace could contain 8 out of

10 emails in consensus before the Delphi meeting, so, during the meeting, we would debate

and then vote to decide upon the allocation of the 2 remaining emails in conflict.
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Algorithm 2: DoDelphiKeywords: The Delphi process employed for consensus

building in email keyword labeling at the 50, 100, and 250 emails.

Data: N: either 50, 100, or 250

Data: K: set of email keyword labels and Emails

Result: FinalKeywords

E N-50

if N == 250 then

E 100

end

KeywordDictionaries SummarizeKeywordLabels(K, E, N)

arguments []

for p 1 to |Panel_Members| do

arguments[p] []

for i E to N do

Top5Keywords SortByDescendingVotes (KeywordDictionaries[i])

if p disagrees with Top5Keywords then

arguments[p][i] Prepare argument for disputed labels in email i.
end

end

end

for i E to N do

Top5Keywords SortByDescendingVotes (KeywordDictionaries[i])

for p 1 to |Panel_Members| do

if arguments[p][i] 6¼ ; then

Present arguments[p][i] to rearrange the top 5 keywords

Top5Keywords keywords with new voting results

end

end

FinalKeywords[i] = Top5Keywords

end

return FinalKeywords
Alg 2 makes reference to another algorithm, shown as Alg 3, in which the Delphi leader

normalizes the labels and anonymizes the votes to summarize the results before the consensus

meeting that occurs at the end of Alg 2. The embedded TextNormalize function can be

thought of as a data cleansing step to ensure that the final labels are case-insensitive and

stemmed, preventing scenarios like “commit”, “Commit”, and “committing” from being con-

sidered as unique keyword labels for a particular email.

Algorithm 3: SummarizeKeywordLabels: The process to normalize and aggregate

all of the panel members’ submitted keyword files.

Data: N, either 50, 100, or 250

Data: Labels.csv from each panel member

Result: KeywordDictionaries

E N-50

if N == 250 then

E 100

end

KeywordDictionaries ;

for file in panel_member_submissions do

for i E to N do
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for k in Ki do

k TextNormalize(k)
if k in KeywordDictionaries[i] then

KeywordDictionaries[i][k] += 1

else

KeywordDictionaries[i][k] 1

end

end

end

end

return KeywordDictionaries
At the conclusion of the meetings to resolve the email labels, metalabels, and trace allocations,

the panel members allocated the traces to workflows as described in Section 5, the DoWork-
flowLabeling algorithm described in Alg 4. Essentially, given a collection of emails, key-

words, metalabels, and traces, this algorithm describes how each panel member chose “actions”

to assign to each email event and to then look for patterns in the trace instances to construct

workflows. The consensus metalabels provided a good guide in the selection of actions; fre-

quently, the action labels were a coarser instance of the metalabels. In addition to allocating

traces to workflows by looking for pattern recognition, we also counted the numbers of instances

of each edge occurring in the workflow graph as a stand-in for the support of each edge.

Algorithm 4: DoWorkflowLabeling: High level description of the trace-to-workflow

assignment algorithm.

Data:M email metalabels

Data: T identified event traces

Result: Actions, Workflows

W ;
A ;
for τ in T do

aprev = ;

for e in τ do

a = FindAssociatedAction(e,M[e], τ, A)

if a = ; then

a = NewAction(“action_label”)

A = A [ a
end

w = FindAssociatedWorkflow(a,W)

if w = ; then

w = NewWorkflow ()

W =W [ w
end

wA = wA [ a
if aprev 6¼ ; then

wD = wD [ (aprev, a)
end

aprev = a
end

end

(A,W) DoDelphiWorkflows(A,W)
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5 Results

In this section, we provide samples of the consensus results produced during the Delphi pro-

cess; links to the full results are provided in Section 8. We note that we disallowed the use of

JIRA issue numbers as valid consensus keywords early in the Delphi meetings, although those

labels do appear in the individual votes.

Keyword labeling results for emails 102-107 are shown in Table 2. Each email has an email

ID ordered temporally, followed by a list of the 5 resulting keywords and the number of votes

received for each keyword label. The consensus keywords are not always English language

words.

The metalabel results for emails 102-107 are shown in Table 3. One of the main reasons for

metalabels is to succinctly describe the event represented in the underlying email. This pro-

vides a first layer of abstraction that helps align the emails with the traces and to later assist in

the assignment of action labels.

Using the keywords and metalabels, the team derived 65 traces from the 250 emails. Four

example consensus traces are provided in Table 4. Trace 30 assigns three of the emails (100,

101, and 104) depicted in Tables 2 and 3 to a single trace associated with activities that occur in

the middle of an issue workflow instance. Similarly, trace 31 assigns three of the emails (102,

106, and 107) to a single trace associated with the creation, code commit, and closing of a JIRA

issue. The other two traces only contain single events.

These traces, keywords, and metalabels guided the extraction of 19 actions shown in

Table 5 that each describe a significant task in the email chain. To evaluate the quality and

validity of these actions, we inspected the underlying keywords associated with these actions.

We combined the 5 keywords for each email associated with a particular action to create a

larger keyword-action dataset. We then used this to measure the frequency distribution of

these words for a given action. The quality and uniqueness of an action could thus be com-

pared by measuring the sharpness of each frequency distribution and its overlap with other

action-keyword frequency distributions. Given an action-keyword frequency distribution and

its mean keyword, the overlap with all other observed action-keyword frequency distributions

within 1 standard deviation of the mean is denoted OL(σ), within 2 standard deviations OL

(2σ), and for all the keywords within the distribution, OL(all). Therefore, a standard deviation

value of σ = x withOL(σ) = y would imply that there were x unique keywords within 1 standard

deviation of the action-keyword frequency distribution’s most observed keyword, and the frac-

tion y of these x unique keywords were observed in other action-keyword frequency distribu-

tions. These results are summarized in Table 5.

Table 6 provides the action labels for traces 30–33. These can be compared with the key-

words and metalabels for their constituent emails provided in Tables 2 and 3.

The final workflows were constructed from the consensus actions, where the actions and

sequencing in the workflow instances were denoted as digraph vertices and edges, respectively.

This resulted in 6 consensus workflow labels, summarized in Table 7. Four of the workflows

were trivial, containing only one action with self referential loops. Two non-trivial workflows

are shown in Figs 3 and 4. The complete allocation of traces, action labels, and workflow labels

is provided in the S5 File (8).

6 Discussion

90% of the observed workflow instances in the dataset mapped to the dominant two work-

flows, support and bugfix. The fidelity of these workflows were heavily dependent on the gran-

ularity of the chosen actions. There is a tension between over-generalizing actions versus

assigning actions that are too specific. The former may result in a single digraph that
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encapsulates all workflow instances, whereas the latter could result in an excessive number of

overly specific digraphs. This drove us to a consensus selection of 19 actions unique enough to

differentiate workflow instances whilst still remaining general enough to construct meaningful

workflow models. For example: the bugfix digraph contains workflow instances that result in

creation, modification, and completion of code, regardless of the specific type (e.g. feature

additions, improvements, or bugs); the support digraph contains workflow instances that result

in user and developer questions, support, and updates; the build system update digraph con-

tains workflow instances that result in updates to the Camel servers; and so on. The result was

the identification of different processes occurring in the overall Camel system.

Several discussions revolved heavily on the assignment of several actions that were deemed

too similar by certain members of the panel (e.g. “issue comment” vs. “issue update”, and

“update a question” vs. “asking a question”). The actions which were more heavily discussed

are measurably different from other actions in terms of their overlap. Actions such as “build

system update”, “assign issue”, and “commit changes” had less than 35% overlap within 1 stan-

dard deviation of their most frequent word, and 50% overlap within 2 standard deviations in

comparison with other actions; this may indicate that these actions were more uniquely

defined. On the other hand, actions such as “issue comment” and “issue update” had closer to

65% and 85% overlap, respectively. Generally, the overlap values indicate that the peaks of the

action-keyword frequency distributions are differentiable, and thus we believe the actions are

an accurate representation of the tasks within the workflow instances. Further investigation is

needed to determine whether taking samples from different subsets of the larger Camel dataset

results in more workflow instances and subsequently a greater distribution of actions to be

observed, thereby improving the accuracy of our chosen actions. In the supplementary infor-

mation for the consensus keyword labels, we are also providing each panel member’s vote for

Table 2. Consensus of keyword labels for emails 102-107 following the Delphi process meetings.

Email ID: 102 Email ID: 103 Email ID: 104

(‘created’, 6) (‘docker’, 8) (‘commented’, 7)

(‘doc’, 5) (‘upgrade’, 7) (‘release’, 6)

(‘ascii’, 5) (‘java’, 7) (‘accessexternaldtd’, 5)

(‘task’, 4) (‘commit’, 6) (‘xerces’, 4)

(‘component’, 4) (‘version’, 6) (‘property’, 2)

Email ID: 105 Email ID: 106 Email ID: 107

(‘pom.xml’, 6) (‘doc’, 6) (‘resolved’, 7)

(‘camel-catalog’, 6) (‘ascii’, 6) (‘ascii’, 6)

(‘fix’, 6) (‘commit’, 5) (‘doc’, 5)

(‘javadoc’, 5) (‘component’, 4) (‘component’, 4)

(‘commit’, 5) (‘warn’, 1) (‘fixed’, 3)

https://doi.org/10.1371/journal.pone.0211486.t002

Table 3. Consensus meta-labels for emails 102-107 following the Delphi process meetings.

Email ID Meta-labels

102 task creation

103 commit code modification

104 bug issue comment

105 commit fix

106 commit fix

107 task issue resolved

https://doi.org/10.1371/journal.pone.0211486.t003
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each keyword label as another means of assessing the “strength” of the keyword-to-email (and

to-action) assignment. For instance, some emails had strong keyword-label consensus before

the Delphi meetings, so it may be more likely for those keywords to be identified and associ-

ated to actions, whereas emails/actions with very weak keyword-label consensus may corre-

spond with broader overlaps.

As described in Section 2, it is possible to extract a workflow using partial workflow

instances if enough of these partial workflow instances exist in the data. For example, trace 30

and 31 in Table 6 were initially mapped to two workflow instances that were assigned to two

separate digraphs because there was no overlap in their actions. However the existence of

other workflow instances eventually created a connection between actions of these workflows

resulting in their consolidation to the same digraph (e.g. bugfix). We did observe that some

digraph linkages only had a small number of directed edge counts to link together digraphs.

For example, the digraphs for “bugfix” and “support” have a connection between the graph

vertices “provide support” and “ask a question”, but we were uncertain as to whether this con-

nection was an isolated instance or generalizable as part of the workflow. In order to maintain

the generalizability of the digraphs, we decided that vertices with two or less edge counts did

not have enough support and were omitted from the final result. Further work may consider

Table 4. Consensus trace descriptions for traces 30-33.

Trace ID Summary description Email IDs

30 CAMEL-11000 property accessexternaldtd not recognized 100, 101, 104

31 CAMEL-11160: Component docs—ASCII doc warns 102, 106, 107

32 upgrade Docker java version 3.0.9 103

33 fix pom.xml camel-catalog javadoc generated 105

https://doi.org/10.1371/journal.pone.0211486.t004

Table 5. Actions, and their observed frequencies, constructed from the traces, keywords, and metalabels during the Delphi process. σ denotes the standard deviation

of the an action-keyword frequency distribution, and OL(σ) the fractional overlap with other action-keyword frequency distributions within 1σ.

Action Frequency σ OL(σ) OL(2σ) OL(all)

commit changes 87 24.67 0.36 0.49 0.49

issue comment 23 13.43 0.67 0.87 0.90

ask a question 18 36.38 0.41 0.57 0.59

create issue 17 16.97 0.36 0.56 0.60

issue update 15 11.15 0.64 0.85 0.91

provide support 13 35.33 0.51 0.69 0.69

resolve issue 12 11.92 0.62 0.85 0.90

close pull request 11 16.51 0.67 0.91 0.96

automated comment issue 10 6.10 0.64 0.90 0.96

build system update 10 2.10 0.20 0.24 0.24

assign issue 9 14.69 0.31 0.49 0.56

open pull request 8 12.28 0.65 0.93 0.95

update question 4 10.64 0.55 0.70 0.70

version release planning 4 8.64 0.40 0.60 0.65

close question 3 10.23 0.53 0.80 0.87

reopen issue 2 3.82 0.40 0.70 0.80

work started issue 2 6.82 0.26 0.42 0.42

distribute situational awareness 1 3.41 0.0 0.0 0.0

publicity 1 3.41 0.0 0.0 0.0

https://doi.org/10.1371/journal.pone.0211486.t005
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increasing the size of the considered dataset, which would be required to further investigate

whether these are meaningful connections in producing workflows.

This dataset yields several advantages for initial research into automated workflow analysis.

For instance, several of the traces were readily tagged with JIRA tracking (ticket) numbers,

allowing for easy identification of connected events. Also, the workflows that correspond to

these issues typically have regular observable beginnings and endings (opening and closing the

tickets) which make these particular emails, traces, and workflows valuable for analysis, since

the JIRA server mediates many of the workflows performed by the developers and users.

However, these advantages come at the cost of a potential loss of generality. Clearly, if one

is attempting to correlate traces with their underlying workflows in the absence of a regular,

machine-driven mediator, these advantages will not be transferrable since there will be more

variance in the human-driven processes. Therefore, successful resolution of this dataset with a

trial algorithm alone is likely a necessity, but insufficient condition for application of more

general problems. Although this dataset has sufficient complexity to challenge the algorithm

designer, there are a number of approaches that one could employ to test the robustness of a

trial workflow analysis algorithm. For instance, one could scramble the temporal ordering of

the emails (fuzzing their times), add or remove random words from the emails, deliberately

misspell certain words, drop time intervals to simulate sensor downtime, etc., in order to test

the robustness of the trial algorithm. By parameterizing such noise, one could also calculate the

sensitivities of trial algorithms to these data distortions.

Future work to improve this dataset may include enrichment of labels with the extant social

network information arising from the cyber-personas (email addresses and observed names).

For instance, as a first step, incorporating the from- and to-addresses in the emails would likely

enhance the accuracy of a trace recognition algorithm. Another avenue might be to look for

patterns of particular users in beginning and/or ending traces; users’ participation in a particu-

lar trace may be strongly indicative of a trace’s workflow membership. However, this dataset is

deficient in varied cyber-personas (users) throughout the 250 emails, so it is possible that this

data enrichment may not be practical. Many of the emails are sent to or received from large,

group email addresses, such as jira@apache.org and issues@camel.apache.org, which dilutes

this information.

It is worth noting that the Delphi consensus discussions often took longer than we

expected. The total work effort was approximately 60 work hours per person (40 hours to ana-

lyze 250 emails, 10 hours to conduct the Delphi meetings, and 10 more hours for workflow

analysis and the final Delphi meeting). For those who wish to attempt an extension of this

work on the same dataset—or on a different dataset altogether—we recommend conducting

the first Delphi meeting relatively early in the process (or a pilot run) to establish annotation

requirements early on. As the meetings progressed, the consensus meetings ran more fluidly,

but it was critical to engage in discussions about which and what combinations of keywords

were permissible, etc., in order to truly achieve consensus. For instance, we decided during an

early Delphi meeting to disallow JIRA issue numbers as valid consensus keyword labels to

Table 6. Consensus action descriptions for traces 30-33.

Trace ID Action List Email IDs

30 issue comment, issue update, issue comment 100, 101, 104

31 create issue, commit changes, resolve issue 102, 106, 107

32 commit changes 103

33 commit changes 105

https://doi.org/10.1371/journal.pone.0211486.t006
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enhance the human-interpretable value of the keyword data, although the raw data does reflect

some votes for those labels.

7 Related work

The driving component of our work is the combination of event classification and process

mining techniques employed to perform workflow analysis. Existing research in both NLP and

process mining fields discuss the use of labeled ground truth datasets to validate their

approaches. However, we have yet to find a single labeled, ground truth dataset that can be

used to validate the entire workflow analysis pipeline.

Email-activity management systems frequently use text classification techniques in super-

vised learning environments to label and classify activities. For instance, Drezde et al. [21] use

the Naïve Bayes classifier and a set of labeled emails as a baseline approach to define email

activity membership in their study. This type of classification technique is useful for static sets

of labels, but does not accommodate well for dynamic sets of labels where new activity labels

are continually added over time. Kiritchenko and Matwin [22] attempt to overcome this man-

ual labeling problem by employing an approach called Co-Training, which requires only a

small set of labeled examples and redundant features to produce initial weak classifiers; these

classifiers will iteratively train each other on unlabeled data to improve their accuracy and per-

formance. These types of text classification processes require large amounts of labeled training

data to increase the accuracy of the classifier, however the workflows within these datasets are

given by the process structure of the reply email chains, based on subject line and sender. The

complex workflows that can be generated from the actions events by considering multiple

email chains are absent from the manually annotated datasets these studies use. Thus, although

the labeled datasets can be used to test the accuracy of keyword and metalabel generation, it is

insufficient for workflow analysis.

Kalia et al. [23] focus their work on classifying activities based on commitment-based ser-

vice engagements from chat and email messages. The goal of their study is to follow the pro-

gression of service commitments and capture the business relationships that are involved

between two entities. They apply natural language processing and machine learning to identify

the creation, delegation, cancellation, and/or completion of a commitment. First, they group

all emails replied to or forwarded with the same subject line into one conversation thread.

Chats are, by default, grouped by thread. Second, in each conversation thread, they identify

whether the message contains a task, or business activity, by using the typed-dependency

method [24] to find relationships among words in each sentence. Finally, if the task indicates

the creation of a commitment they use key features (e.g., present or past tense, action verbs,

and negative verbs) to identify the stages of that commitment within each conversation thread.

Thus, they are able to group commitments based on particular tasks. This approach takes

Table 7. Workflow labels and incidence. Note that they do not sum to 65 since two workflow instances overlap as the

“bugfix” and “user support” workflows.

Workflow Count

bugfix 47

user support 14

system update 3

situational awareness 1

release planning 1

publicity 1

https://doi.org/10.1371/journal.pone.0211486.t007
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Fig 3. Workflow digraph containing the actions relating to a “bugfix”. Numbers between each directed edge (including self referential

connections) indicate the number of instances of this connection.

https://doi.org/10.1371/journal.pone.0211486.g003

A dataset to facilitate automated workflow analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0211486 February 7, 2019 18 / 22

https://doi.org/10.1371/journal.pone.0211486.g003
https://doi.org/10.1371/journal.pone.0211486


event classification and discovery one step further by including event sequencing through the

discovery of service commitment progression workflows. Their work used an automatic

labeler to extract events related to the commitment workflow from the data, then had two

annotators manually group these events into actions of creation, delegation, cancellation, and/

or completion. Although the complexity for the commitment workflow would have been suffi-

cient for our work, we want to be able to extract any or all workflows from within a dataset,

thus the single ground truth commitment workflow in this dataset is insufficient for workflow

analysis.

Process Mining (or Workflow Mining) is a set of algorithms for discovering workflows in

an organization based on labeled event logs [25], or PCAP data [26]. The general concept is to

construct a complete business workflow using exemplar cases within an event log which repre-

sent instances of the workflow being followed. Each case may vary, and not reflect the entire

workflow due to potential existence of conditional, alternative or optional steps, but the aggre-

gate of all cases has been shown to produce a more accurate workflow than any individual

sequences. Process mining has applications across many domains, especially in organizations

whose operations are high tempo, naturally workflow-oriented, but requires fluidity due to

dynamism (such as hospitals, logistics, media companies and crime investigation agencies).

Process mining is designed to augment workflow systems, as such it requires as a minimum

labeled event sequences. This means that raw datasets (network traffic or user event logs) can-

not be studied without having already gone through event classification and sequencing. Work

in [27, 28] uses the verbiage inherent in procedural texts to sequence tasks. Di Ciccio and

Mecella describe a declarative approach for mining control-flow constraints between tasks;

our intended application of this data is most similar to their approach [4]. Delicado et al. pro-

vide an NLP-based capability that links text-based descriptions of process models to a standard

business process model description in their NLP4BPM tool [6]. In a discussion of challenges

and opportunities of applying NLP to business process management, van der Aa et al. similarly

focus on the potential utility of NLP in alleviating the burden of elucidating a process from its

text description or comparing between processes [29]. However, we found no datasets within

Fig 4. Workflow digraph containing the actions relating to “support”. Numbers between each directed edge

(including self referential connections) indicate the number of instances of this connection.

https://doi.org/10.1371/journal.pone.0211486.g004
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process mining that contained labeled, sequenced natural language events for the purposes of

discovering business process models from raw text.

Other, less standard, ground truthed datasets were also considered, however they often had

a lack of data availability or accessibility to us. For instance, the 4TU Datacentrum hospital

logs [30] contain workflows for patient treatment and movement within a hospital, however,

all natural language events were in Dutch and generally very short.

8 Conclusion

In this work we constructed a ground truth dataset that describes a subset of the business func-

tions for an open source software project in order to facilitate methods for automated work-

flow analysis. This ground truth contains manually annotated keywords, metalabels, traces,

and actions, via the Delphi consensus method, that serve as meaningful descriptors to con-

struct the workflows that best describe these business functions. This provides the missing link

between semantic descriptions of mission goals and observable events in cyberspace, enabling

researchers to quantify the efficacy of automated algorithms for workflow discovery analysis,

as well as other automated analysis techniques within the fields of natural language processing

and business process mining. This dataset enables future researchers in the area of workflow

analysis to understand the methodology that was used to establish the ground truth, including

our novel presentation of mapping sequences of natural language events to workflows. We

also provide a way to replicate the approach using an extension of our source data or any other

source data and provide a foundation for the testing and constructing of automated workflow

analysis techniques. The Delphi consensus method results, labeled data, and final workflow

results are available through the links in Section 8.

Supporting information

S1 File. Consensus keyword labels. This comma-separated-value (CSV) file contains the con-

sensus keyword labels for each of the 250 emails, indexed by local email ID. It also contains the

jth Delphi member’s individual vote for keyword k under the heading “Keyword_k_mem-

ber_j”.

(CSV)

S2 File. Consensus metalabels. This CSV file contains the consensus metalabels for each of

the 250 emails, indexed by local email ID.

(CSV)

S3 File. Consensus traces. This CSV file contains the 65 consensus traces for each of the 250

emails. Each trace is indicated by a sequence of email IDs.

(CSV)

S4 File. Consensus workflow and action labels. This CSV file corresponds with the traces file

in the S4 File (8), but the traces are assigned to workflow labels and the email IDs are replaced

with consensus action labels.

(CSV)

S5 File. Workflow construction data, CSV format. This CSV correlates the email IDs, times,

trace IDs, and actions to enable the construction of workflows. It can, for instance, be used

as an input file to bupaR, “Business Process Analysis in R”, available at https://www.bupar.

net/.

(CSV)
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S6 File. Workflow construction data, XES format. Upon reviewer request, the workflow con-

struction data in 8 is also provided in the eXtensible Event Stream (XES) format defined at

http://xes-standard.org.

(XES)
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